Entanglement and secret-key-agreement capacities of bipartite quantum interactions and read-only memory devices

Siddhartha Das ${ }^{1 *}$ Stefan Bäuml ${ }^{2}$ Mark M. Wilde ${ }^{1}$
${ }^{1}$ Louisiana State University, USA
${ }^{2}$ Delft University of Technology, Netherlands \& NTT Japan
*sdas21@lsu.edu
arXiv:1712.00827
$8^{\text {th }}$ International Conference on Quantum Cryptography, Shanghai, China

Bipartite quantum interactions

Bipartite unitary interactions are the most elementary many-body interactions. Due to unavoidable interaction with environment, study of bipartite noisy interactions is pertinent.

- \mathcal{U} is unitary transformation
corresponding to underlying interaction Hamiltonian \hat{H} among
$A^{\prime}, B^{\prime}, E^{\prime}$.
- Before action of interaction Hamiltonian $\hat{H}: \omega_{A^{\prime} B^{\prime}} \otimes \tau_{E^{\prime}}$, where bath E^{\prime} is in some fixed state and uncorrelated to $A^{\prime} B^{\prime}$
- After action of \hat{H}

$$
\rho_{A B E}:=\mathcal{U}_{A^{\prime} B^{\prime} E^{\prime} \rightarrow A B E}\left(\omega_{A^{\prime} B^{\prime}} \otimes \tau_{E^{\prime}}\right) .
$$

Bipartite quantum interactions

Bipartite unitary interactions are the most elementary many-body interactions. Due to unavoidable interaction with environment, study of bipartite noisy interactions is pertinent.

Figure: Systems of interest A^{\prime} and B^{\prime} interacting in presence of the bath E^{\prime}.

- \mathcal{U} is unitary transformation corresponding to underlying interaction Hamiltonian \hat{H} among $A^{\prime}, B^{\prime}, E^{\prime}$.
- Before action of interaction Hamiltonian $\hat{H}: \omega_{A^{\prime} B^{\prime}} \otimes \tau_{E^{\prime}}$, where bath E^{\prime} is in some fixed state and uncorrelated to $A^{\prime} B^{\prime}$
- After action of \hat{H}

Bipartite quantum interactions

Bipartite unitary interactions are the most elementary many-body interactions. Due to unavoidable interaction with environment, study of bipartite noisy interactions is pertinent.

Figure: Systems of interest A^{\prime} and B^{\prime} interacting in presence of the bath E^{\prime}.

- \mathcal{U} is unitary transformation corresponding to underlying interaction Hamiltonian \hat{H} among $A^{\prime}, B^{\prime}, E^{\prime}$.
- Before action of interaction Hamiltonian $\hat{H}: \omega_{A^{\prime} B^{\prime}} \otimes \tau_{E^{\prime}}$, where bath E^{\prime} is in some fixed state and uncorrelated to $A^{\prime} B^{\prime}$.
- After action of \hat{H}

Bipartite quantum interactions

Bipartite unitary interactions are the most elementary many-body interactions. Due to unavoidable interaction with environment, study of bipartite noisy interactions is pertinent.

Figure: Systems of interest A^{\prime} and B^{\prime} interacting in presence of the bath E^{\prime}.

- \mathcal{U} is unitary transformation corresponding to underlying interaction Hamiltonian \hat{H} among $A^{\prime}, B^{\prime}, E^{\prime}$.
- Before action of interaction Hamiltonian $\hat{H}: \omega_{A^{\prime} B^{\prime}} \otimes \tau_{E^{\prime}}$, where bath E^{\prime} is in some fixed state and uncorrelated to $A^{\prime} B^{\prime}$.
- After action of \hat{H} :

$$
\rho_{A B E}:=\mathcal{U}_{A^{\prime} B^{\prime} E^{\prime} \rightarrow A B E}\left(\omega_{A^{\prime} B^{\prime}} \otimes \tau_{E^{\prime}}\right) .
$$

Bidirectional quantum channel

A bipartite quantum channel $\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}$ is a completely positive, trace-preserving map that transforms composite system $A^{\prime} B^{\prime}$ to $A B$.

Bidirectional quantum channel

A bipartite quantum channel $\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}$ is a completely positive, trace-preserving map that transforms composite system $A^{\prime} B^{\prime}$ to $A B$.

Figure: Two parties of interest: Alice holds A^{\prime}, A and Bob holds B^{\prime}, B.

- When A^{\prime}, A are held by Alice and B^{\prime}, B are held by Bob, bipartite channel \mathcal{N} is called bidirectional channel.
- It corresponds to noisy bipartite interaction, when bath is inaccessible.
- For all input state $\omega_{A^{\prime} B^{\prime}}$: $\mathcal{N}\left(\omega_{A^{\prime} B^{\prime}}\right)=\rho_{A B}$, where $\rho_{A B}:=\operatorname{Tr}_{E}\left\{\mathcal{U}_{A^{\prime} B^{\prime} E^{\prime} \rightarrow A B E}\left(\omega_{A^{\prime} B^{\prime}} \otimes \tau_{E^{\prime}}\right)\right\}$

Bidirectional quantum channel

A bipartite quantum channel $\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}$ is a completely positive, trace-preserving map that transforms composite system $A^{\prime} B^{\prime}$ to $A B$.

Figure: Two parties of interest: Alice holds A^{\prime}, A and Bob holds B^{\prime}, B.

- When A^{\prime}, A are held by Alice and B^{\prime}, B are held by Bob, bipartite channel \mathcal{N} is called bidirectional channel.
- It corresponds to noisy bipartite interaction, when bath is inaccessible.
- For all input state $\omega_{A^{\prime} B^{\prime}}$:
$\mathcal{N}\left(\omega_{A^{\prime} B^{\prime}}\right)=\rho_{A B}$, where $\rho_{A B}:=\operatorname{Tr}_{E}\left\{\mathcal{U}_{A^{\prime} B^{\prime} E^{\prime} \rightarrow A B E}\left(\omega_{A^{\prime} B^{\prime}} \otimes \tau_{E^{\prime}}\right)\right\}$, when initial state $\tau_{E^{\prime}}$ of bath is fixed.

Motivation

Bidirectional channels:

- Simple model of quantum network with 2 clients, Alice and Bob.
- Model for quantum gates - CNOT, SWAP, etc.- in noisy intermediate-scale quantum (NISQ) computers.

[^0]
Motivation

Bidirectional channels:

- Simple model of quantum network with 2 clients, Alice and Bob.
- Model for quantum gates - CNOT, SWAP, etc.- in noisy intermediate-scale quantum (NISQ) computers.

```
Entanglement may increase, decrease or not change due to bipartite quantum interactions.
Entanglement distillation: Maximally entangled states are useful resource for several
information processing tasks: quantum key distribution, quantum teleportation, etc.
Secret key distillation: Need for secure communication protocols between two parties over
network - private reading.
```


Motivation

Bidirectional channels:

- Simple model of quantum network with 2 clients, Alice and Bob.
- Model for quantum gates - CNOT, SWAP, etc.- in noisy intermediate-scale quantum (NISQ) computers.

Entanglement may increase, decrease or not change due to bipartite quantum interactions.
Entanglement distillation: Maximally entangled states are useful resource for several information processing tasks: quantum key distribution, quantum teleportation, etc. Secret key distillation: Need for secure communication protocols between two parties over network - private reading

Motivation

Bidirectional channels:

- Simple model of quantum network with 2 clients, Alice and Bob.
- Model for quantum gates - CNOT, SWAP, etc.- in noisy intermediate-scale quantum (NISQ) computers.

Entanglement may increase, decrease or not change due to bipartite quantum interactions.
Entanglement distillation: Maximally entangled states are useful resource for several information processing tasks: quantum key distribution, quantum teleportation, etc.

Secret key distillation: Need for secure communication protocols between two parties over network - private reading

Motivation

Bidirectional channels:

- Simple model of quantum network with 2 clients, Alice and Bob.
- Model for quantum gates - CNOT, SWAP, etc.- in noisy intermediate-scale quantum (NISQ) computers.

Entanglement may increase, decrease or not change due to bipartite quantum interactions.
Entanglement distillation: Maximally entangled states are useful resource for several information processing tasks: quantum key distribution, quantum teleportation, etc.

Secret key distillation: Need for secure communication protocols between two parties over network - private reading.

Goal

- Two different information-processing tasks relevant for bipartite quantum interactions:
(1) Entanglement distillation: generation of singlet state from two separated systems.
(2) Secret key agreement: generation of maximal classical correlation between two separated systems, such that there's no correlation with the bath.
- New secure communication protocol between two parties, called private reading Non-asymptotic capacity of a channel \mathcal{N} for a task: Maximum rate at which a given task can be accomplished by allowing the use of \mathcal{N} a finite number of times.

Goal

- Two different information-processing tasks relevant for bipartite quantum interactions:
(1) Entanglement distillation: generation of singlet state from two separated systems.
(2) Secret key agreement: generation of maximal classical correlation between two separated systems, such that there's no correlation with the bath
- New secure communication protocol between two parties, called private reading. Non-asymptotic capacity of a channel \mathcal{N} for a task: Maximum rate at which a given task can be accomplished by allowing the use of \mathcal{N} a finite number of times.

Goal

- Two different information-processing tasks relevant for bipartite quantum interactions:
(1) Entanglement distillation: generation of singlet state from two separated systems.
(2) Secret key agreement: generation of maximal classical correlation between two separated systems, such that there's no correlation with the bath.
- New secure communication protocol between two parties, called private reading.

Non-asymptotic capacity of a channel \mathcal{N} for a task: Maximum rate at which a given task can be accomplished by allowing the use of \mathcal{N} a finite number of times.

Goal

- Two different information-processing tasks relevant for bipartite quantum interactions:
(1) Entanglement distillation: generation of singlet state from two separated systems.
(2) Secret key agreement: generation of maximal classical correlation between two separated systems, such that there's no correlation with the bath.
- New secure communication protocol between two parties, called private reading.

Non-asymptotic capacity of a channel \mathcal{N} for a task: Maximum rate at which a given task can be accomplished by allowing the use of \mathcal{N} a finite number of times.

Goal

- Two different information-processing tasks relevant for bipartite quantum interactions:
(1) Entanglement distillation: generation of singlet state from two separated systems.
(2) Secret key agreement: generation of maximal classical correlation between two separated systems, such that there's no correlation with the bath.
- New secure communication protocol between two parties, called private reading.

Non-asymptotic capacity of a channel \mathcal{N} for a task: Maximum rate at which a given task can be accomplished by allowing the use of \mathcal{N} a finite number of times.

Secret key generation over bidirectional channel

- LOCC-assisted bidirectional secret-key-agreement capacity $\left[\mathcal{P}_{L O C C}^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)\right.$.]
- Bidirectional max-relative entropy of entanglement:

Secret key generation over bidirectional channel

- LOCC-assisted bidirectional secret-key-agreement capacity $\left[\mathcal{P}_{\text {LOCC }}^{2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)\right.$]
- Bidirectional max-relative entropy of entanglement:

Secret key generation over bidirectional channel

- LOCC-assisted bidirectional secret-key-agreement capacity $\left[\mathcal{P}_{L O C C}^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)\right.$.]
- Bidirectional max-relative entropy of entanglement:

$$
E_{\max }^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)=\sup _{\psi_{S_{A^{\prime}} \otimes \varphi_{B^{\prime} S_{B}}}} E_{\max }\left(S_{A} A ; B S_{B}\right)_{\mathcal{N}(\psi \otimes \varphi)}
$$

where $\psi_{S_{A} A^{\prime}}, \varphi_{B^{\prime} S_{B}}$ are pure states, $S_{A} \simeq A^{\prime}, S_{B} \simeq B^{\prime}$, $E_{\max }(A: B)_{\rho}=\min _{\sigma_{A B} \in \operatorname{SEP}} D_{\max }(\rho \| \sigma)$, such that $D_{\max }(\rho \| \sigma)=\inf \left\{\lambda: \rho \leq 2^{\lambda} \sigma\right\}$.

Secret key generation over bidirectional channel

Theorem (LOCC-assisted secret key agreement)

- $P_{L O C C}^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right) \leq E_{\max }^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)$, and this upper bound is in fact a strong converse bound.

Secret key generation over bidirectional channel

Theorem (LOCC-assisted secret key agreement)

$$
\frac{1}{n} \log _{2} M \leq E_{\max }^{2 \rightarrow 2}(\mathcal{N})+\frac{1}{n} \log _{2}\left(\frac{1}{1-\varepsilon}\right) .
$$

- $P_{\text {LOCC }}^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right) \leq E_{\text {max }}^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)$, and this upper bound is in fact a strong converse
bound.

Secret key generation over bidirectional channel

Theorem (LOCC-assisted secret key agreement)

$$
\frac{1}{n} \log _{2} M \leq E_{\max }^{2 \rightarrow 2}(\mathcal{N})+\frac{1}{n} \log _{2}\left(\frac{1}{1-\varepsilon}\right) .
$$

- $P_{L O C C}^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right) \leq E_{\max }^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)$, and this upper bound is in fact a strong converse bound.

Proof outline: Secret key generation

- Private states [HHHO05, HHHO 09$]$: State $\gamma_{S_{A} K_{A}:} K_{B} S_{B}$ containing $\log _{2} K$ private bits.
- Success probability in privacy test: By [HHHO05,HHHO09] $\operatorname{Tr}\left\{\Pi^{\gamma} \sigma\right\} \leq \frac{1}{K}$ for $\sigma \in$ SEP.
- Main observation: $E_{\max }^{2 \rightarrow 2}$ is not enhanced by amortization.

$$
E_{\max }\left(S_{A} A ; B S_{B}\right)_{\sigma} \leq E_{\max }\left(S_{A} A^{\prime} ; B^{\prime} S_{B}\right)_{\rho}+E_{\max }^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)
$$

where $\sigma_{S_{A} A B S_{B}}=\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\left(\rho_{S_{A} A^{\prime} B^{\prime} S_{B}}\right)$.

Proof outline: Secret key generation

- Private states [HHHO05, HHHO 09$]$: State $\gamma_{S_{A} K_{A}: K_{B} S_{B}}$ containing $\log _{2} K$ private bits.
- Success probability in privacy test: $\operatorname{Tr}\left\{\Pi^{\gamma} \omega\right\} \geq 1-\varepsilon$. By [HHHO05,HHHO09], $\operatorname{Tr}\left\{\Pi^{\gamma} \sigma\right\} \leq \frac{1}{K}$ for $\sigma \in$ SEP.
- Main observation: $E_{\max }^{2 \rightarrow 2}$ is not enhanced by amortization.

$$
E_{\max }\left(S_{A} A ; B S_{B}\right)_{\sigma} \leq E_{\max }\left(S_{A} A^{\prime} ; B^{\prime} S_{B}\right)_{\rho}+E_{\max }^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right),
$$

[^1]Proof outline: Secret key generation

- Success probability in privacy test: $\operatorname{Tr}\left\{\Pi^{\gamma} \omega\right\} \geq 1-\varepsilon$. By [HHHO05,HHHO09], $\operatorname{Tr}\left\{\Pi^{\gamma} \sigma\right\} \leq \frac{1}{K}$ for $\sigma \in$ SEP.
- Main observation: $E_{\max }^{2 \rightarrow 2}$ is not enhanced by amortization.

$$
E_{\max }\left(S_{A} A ; B S_{B}\right)_{\sigma} \leq E_{\max }\left(S_{A} A^{\prime} ; B^{\prime} S_{B}\right)_{\rho}+E_{\max }^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)
$$

where $\sigma_{S_{A} A B S_{B}}=\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\left(\rho_{S_{A} A^{\prime} B^{\prime} S_{B}}\right)$.

Proof outline: Secret key generation

- Success probability in privacy test: $\operatorname{Tr}\left\{\Pi^{\gamma} \omega\right\} \geq 1-\varepsilon$. By [HHHO05,HHHO09], $\operatorname{Tr}\left\{\Pi^{\gamma} \sigma\right\} \leq \frac{1}{K}$ for $\sigma \in$ SEP.
- Main observation: $E_{\max }^{2 \rightarrow 2}$ is not enhanced by amortization.

$$
E_{\max }\left(S_{A} A ; B S_{B}\right)_{\sigma} \leq E_{\max }\left(S_{A} A^{\prime} ; B^{\prime} S_{B}\right)_{\rho}+E_{\max }^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)
$$

where $\sigma_{S_{A} A B S_{B}}=\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\left(\rho_{S_{A} A^{\prime} B^{\prime} S_{B}}\right)$.

Entanglement generation over bidirectional channel

- PPT-assisted bidirectional quantum capacity $\left[\mathcal{Q}_{P P}^{2 \rightarrow} \underset{T}{2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)\right.$.]
- Bidirectional max-Rains Information $\left[R_{\max }^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)=\log \Gamma^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)\right]$, where

such that $S_{A} \simeq A^{\prime}, S_{B} \simeq B^{\prime}$

Entanglement generation over bidirectional channel

- PPT-assisted bidirectional quantum capacity $\left[\mathcal{Q}_{P P}^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)\right.$.]
- Bidirectional max-Rains Information $\left[R_{\max }^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)=\log \Gamma^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)\right]$, where

$$
\begin{aligned}
\Gamma^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)=\text { minimize } & \| \\
\text { subject to } & V_{A B}\left\{V_{S_{A} A B S_{B}}+Y_{S_{A} A B S_{B}}\right\} \|_{\infty}, Y_{S_{A} A B S_{B}} \geq 0, \\
& T_{B S_{B}}\left\{V_{S_{A} A B S_{B}}-Y_{S_{A} A B S_{B}}\right\} \geq J_{S_{A} A B S_{B}}^{\mathcal{N}},
\end{aligned}
$$

such that $S_{A} \simeq A^{\prime}, S_{B} \simeq B^{\prime}$

Entanglement generation over bidirectional channel

- PPT-assisted bidirectional quantum capacity $\left[\mathcal{Q}_{P P}^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)\right.$.]
- Bidirectional max-Rains Information $\left[R_{\max }^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)=\log \Gamma^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)\right]$, where

such that $S_{A} \simeq A^{\prime}, S_{B} \simeq B^{\prime}$

Entanglement generation over bidirectional channel

- PPT-assisted bidirectional quantum capacity $\left[\mathcal{Q}_{P P}^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)\right.$.]
- Bidirectional max-Rains Information $\left[R_{\max }^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)=\log \Gamma^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)\right]$, where

$$
\begin{aligned}
\Gamma^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)=\text { minimize } & \left\|\operatorname{Tr}_{A B}\left\{V_{S_{A} A B S_{B}}+Y_{S_{A} A B S_{B}}\right\}\right\|_{\infty} \\
\text { subject to } & V_{S_{A} A B S_{B}}, Y_{S_{A} A B S_{B}} \geq 0, \\
& T_{B S_{B}}\left\{V_{S_{A} A B S_{B}}-Y_{S_{A} A B S_{B}}\right\} \geq J_{S_{A} A B S_{B}},
\end{aligned}
$$

such that $S_{A} \simeq A^{\prime}, S_{B} \simeq B^{\prime}$.

Entanglement generation over bidirectional channel

Theorem (PPT-assisted distillable entanglement generation)

- $Q_{P P P T}^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right) \leq R_{\max }^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)$, and this upper bound is in fact a strong converse bound.

Entanglement generation over bidirectional channel

Theorem (PPT-assisted distillable entanglement generation)

$$
\frac{1}{n} \log _{2} M \leq R_{\max }^{2 \rightarrow 2}(\mathcal{N})+\frac{1}{n} \log _{2}\left(\frac{1}{1-\varepsilon}\right) .
$$

- $Q_{P P P T}^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right) \leq R_{\max }^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)$, and this upper bound is in fact a strong converse bound.

Entanglement generation over bidirectional channel

Theorem (PPT-assisted distillable entanglement generation)

$$
\frac{1}{n} \log _{2} M \leq R_{\max }^{2 \rightarrow 2}(\mathcal{N})+\frac{1}{n} \log _{2}\left(\frac{1}{1-\varepsilon}\right) .
$$

- $Q_{P P T}^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right) \leq R_{\max }^{2 \rightarrow 2}\left(\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\right)$, and this upper bound is in fact a strong converse bound.

Application: Private Reading

- First recall: (Quantum) Reading [BRV00,Pir11] of memory devices.
- Memory device: message encoded into a sequence of channels from a memory cell
- Alice encodes $m \in \mathcal{M}$ into codewords $\left(x_{1}(m), \ldots, x_{n}(m)\right)$, and sets the device to
 employ adaptive strategy [DW17]

Application: Private Reading

- First recall: (Quantum) Reading [BRV00,Pir11] of memory devices.
- Memory device: message encoded into a sequence of channels from a memory cell

$$
\mathcal{S}_{\mathcal{X}}=\left\{\mathcal{N}_{B^{\prime} \rightarrow B}^{\times}\right\}_{x \in \mathcal{X}} .
$$

- Alice encodes $m \in \mathcal{M}$ into codewords $\left(x_{1}(m), \ldots, x_{n}(m)\right)$, and sets the device to
- Bob can enter quantum states and do channel discrimination to learn m. Natural to employ adaptive strategy [DW17].

Application: Private Reading

- First recall: (Quantum) Reading [BRV00,Pir11] of memory devices.
- Memory device: message encoded into a sequence of channels from a memory cell $\mathcal{S}_{\mathcal{X}}=\left\{\mathcal{N}_{B^{\prime} \rightarrow B}^{\chi}\right\}_{x \in \mathcal{X}}$.
- Alice encodes $m \in \mathcal{M}$ into codewords $\left(x_{1}(m), \ldots, x_{n}(m)\right)$, and sets the device to $\left(\mathcal{N}_{B^{\prime} \rightarrow B}^{x_{1}(m)}, \ldots, \mathcal{N}_{B^{\prime} \rightarrow B}^{x_{n}(m)}\right)$.
- Bob can enter quantum states and do channel discrimination to learn m. Natural to employ adaptive strategy [DW17]

Application: Private Reading

- First recall: (Quantum) Reading [BRV00,Pir11] of memory devices.
- Memory device: message encoded into a sequence of channels from a memory cell

$$
\mathcal{S}_{\mathcal{X}}=\left\{\mathcal{N}_{B^{\prime} \rightarrow B}^{\times}\right\}_{x \in \mathcal{X}}
$$

- Alice encodes $m \in \mathcal{M}$ into codewords $\left(x_{1}(m), \ldots, x_{n}(m)\right)$, and sets the device to $\left(\mathcal{N}_{B^{\prime} \rightarrow B}^{x_{1}(m)}, \ldots, \mathcal{N}_{B^{\prime} \rightarrow B}^{x_{n}(m)}\right)$.
- Bob can enter quantum states and do channel discrimination to learn m. Natural to employ adaptive strategy [DW17].

Application: Private Reading

- Private reading: Eve present when Bob performs the readout: Wiretap memory cell $\overline{\mathcal{S}}_{\mathcal{X}}=\left\{\mathcal{M}_{B^{\prime} \rightarrow B E}^{\chi}\right\}_{x \in \mathcal{X}} . \quad$ Special case: Isometric wiretap memory cell $\bar{S}_{X}^{\text {iso }}$.
- The non-adaptive private reading capacity of a wiretap memory cell $\mathcal{S}_{\mathcal{X}}$ is given by

$$
\text { where } \tau_{X^{n} L_{B} B^{n} E^{n}}:=\sum_{X^{n}} p_{X^{n}}\left(x^{n}\right)\left|x^{n}\right\rangle\left\langle x^{n}\right| X^{n} \otimes \mathcal{M}_{B^{\prime n} \rightarrow B^{n} E^{n}}^{x^{n}}\left(\sigma_{L_{B} B^{\prime n}}\right) .
$$

Application: Private Reading

- Private reading: Eve present when Bob performs the readout: Wiretap memory cell $\overline{\mathcal{S}}_{\mathcal{X}}=\left\{\mathcal{M}_{B^{\prime} \rightarrow B E}^{\chi}\right\}_{x \in \mathcal{X}} . \quad$ Special case: Isometric wiretap memory cell $\bar{S}_{X}^{\text {iso }}$.
- The non-adaptive private reading capacity of a wiretap memory cell $\mathcal{S}_{\mathcal{X}}$ is given by

$$
P_{\mathrm{n}-\mathrm{a}}^{\text {read }}\left(\overline{\mathcal{M}}_{\mathcal{X}}\right)=\sup _{n} \max _{p_{X^{n}, \sigma_{L_{B} B^{\prime \prime}}}} \frac{1}{n}\left[I\left(X^{n} ; L_{B} B^{n}\right)_{\tau}-I\left(X^{n} ; E^{n}\right)_{\tau}\right],
$$

where $\tau_{X^{n} L_{B} B^{n} E^{n}}:=\sum_{X^{n}} p_{X^{n}}\left(X^{n}\right)\left|x^{n}\right\rangle\left\langle\left. x^{n}\right|_{X^{n}} \otimes \mathcal{M}_{B^{\prime n} \rightarrow B^{n} E^{n}}^{X^{n}}\left(\sigma_{L_{B} B^{\prime n}}\right)\right.$.

Application: Private Reading

- Private reading: Eve present when Bob performs the readout: Wiretap memory cell Special case: Isometric wiretap memory cell $\bar{S}_{X}^{\text {iso }}$
- The non-adaptive private reading capacity of a wiretap memory cell $\overline{\mathcal{S}}_{\mathcal{X}}$ is given by

where $\tau_{X^{n} L_{B} B^{n} E^{n}}:=\sum_{X^{n}} p_{X^{n}}\left(x^{n}\right)\left|X^{n}\right\rangle\left\langle x^{n} X_{X^{n}} \otimes \mathcal{M}_{B^{\prime n} \rightarrow B^{n} E^{n}}^{x^{n}}\left(\sigma_{L_{B} B^{\prime n}}\right)\right.$.

Application: Private Reading

- Private reading: Eve present when Bob performs the readout: Wiretap memory cell $\overline{\mathcal{S}}_{\mathcal{X}}=\left\{\mathcal{M}_{B^{\prime} \rightarrow B E}^{\chi}\right\}_{x \in \mathcal{X}}$.

Special case: Isometric wiretap memory cell $\bar{S}_{X}^{\text {iso }}$

- The non-adaptive private reading capacity of a wiretap memory cell $\overline{\mathcal{S}}_{\mathcal{X}}$ is given by

where $\tau_{X^{n} L_{B} B^{n} E^{n}}:=\sum_{x^{n}} p_{X^{n}}\left(x^{n}\right)\left|x^{n}\right\rangle\left\langle\left. x^{n}\right|_{X^{n}} \otimes \mathcal{M}_{B^{\prime \prime} \rightarrow B^{n} E^{n}}^{x^{n}}\left(\sigma_{L_{B} B^{\prime n}}\right)\right.$.

Application: Private Reading

- Private reading: Eve present when Bob performs the readout: Wiretap memory cell $\overline{\mathcal{S}}_{\mathcal{X}}=\left\{\mathcal{M}_{B^{\prime} \rightarrow B E}^{\times}\right\}_{x \in \mathcal{X}} . \quad$ Special case: Isometric wiretap memory cell $\bar{S}_{X}^{\text {iso }}$.
- The non-adaptive private reading capacity of a wiretap memory cell $\mathcal{S}_{\mathcal{X}}$ is given by

where $\tau_{X^{n} L_{B} B^{n} E^{n}}:=\sum_{X^{n}} p_{X^{n}}\left(x^{n}\right)\left|x^{n}\right\rangle\left\langle\left. x^{n}\right|_{X^{n}} \otimes \mathcal{M}_{B^{\prime n} \rightarrow B^{n} E^{n}}^{x^{n}}\left(\sigma_{L_{B} B^{\prime n}}\right)\right.$.

Application: Private Reading

- Private reading: Eve present when Bob performs the readout: Wiretap memory cell $\overline{\mathcal{S}}_{\mathcal{X}}=\left\{\mathcal{M}_{B^{\prime} \rightarrow B E}^{\times}\right\}_{x \in \mathcal{X}} . \quad$ Special case: Isometric wiretap memory cell $\bar{S}_{X}^{\text {iso }}$.
- The non-adaptive private reading capacity of a wiretap memory cell $\overline{\mathcal{S}}_{\mathcal{X}}$ is given by

$$
P_{n-a}^{\text {read }}\left(\overline{\mathcal{S}}_{\mathcal{X}}\right)=\sup _{n} \max _{p_{X n}, \sigma_{L_{B} B^{\prime \prime}}} \frac{1}{n}\left[I\left(X^{n} ; L_{B} B^{n}\right)_{\tau}-I\left(X^{n} ; E^{n}\right)_{\tau}\right],
$$

where $\tau_{X^{n} L_{B} B^{n} E^{n}}:=\sum_{X^{n}} p_{X^{n}}\left(x^{n}\right)\left|x^{n}\right\rangle\left\langle\left. x^{n}\right|_{X^{n}} \otimes \mathcal{M}_{B^{\prime n} \rightarrow B^{n} E^{n}}^{x^{n}}\left(\sigma_{L_{B} B^{\prime n}}\right)\right.$.

Private reading capacity

The strong converse private reading capacity $\widetilde{P}^{\text {read }}\left(\overline{\mathcal{S}}_{\mathcal{X}}^{\text {iso }}\right)$ of an isometric wiretap memory cell $\overline{\mathcal{S}}_{\mathcal{X}}^{\text {iso }}=\left\{\mathcal{U}_{B^{\prime} \rightarrow B E}^{\mathcal{M}^{\times}}\right\}_{x \in \mathcal{X}}$ is bounded from above as

$$
\widetilde{P}^{\text {read }}\left(\overline{\mathcal{S}}_{\mathcal{X}}^{\text {iso }}\right) \leq E_{\max }^{2 \rightarrow 2}\left(\mathcal{N}_{X B^{\prime} \rightarrow X B}^{\overline{\mathcal{S}}}\right),
$$

where

$$
\mathcal{N}_{X B^{\prime} \rightarrow X B}^{\overline{\mathcal{S}}}(\cdot):=\operatorname{Tr}_{E}\left\{U_{X B^{\prime} \rightarrow X B E}^{\overline{\mathcal{S}}}(\cdot)\left(U_{X B^{\prime} \rightarrow X B E}^{\overline{\mathcal{S}}}\right)^{\dagger}\right\}
$$

such that

$$
U_{X B^{\prime} \rightarrow X B E}^{\overline{\mathcal{S}}}:=\sum_{x \in \mathcal{X}}|x\rangle\left\langle\left. x\right|_{X} \otimes U_{B^{\prime} \rightarrow B E}^{\mathcal{M}^{x}}\right.
$$

Conclusion

- We derived upper bounds on entanglement generation and secret-key-agreement capacities over bidirectional channels. Sizes of reference systems are same as size of input systems (Open question in [BHLS03]).
- Obtain tighter upper bounds for channels obeying certain symmetries, see [DBW17]
- Introduced secure protocol for reading of memory devices under scrutiny of an eavesdropper. Both upper and lower bounds for this protocol can be found in [DBW17].
[DBW17] arXiv : 1712.00827

Conclusion

- We derived upper bounds on entanglement generation and secret-key-agreement capacities over bidirectional channels. Sizes of reference systems are same as size of input systems (Open question in [BHLS03]).
- Obtain tighter upper bounds for channels obeying certain symmetries, see [DBW17].
- Introduced secure protocol for reading of memory devices under scrutiny of an eavesdropper. Both upper and lower bounds for this protocol can be found in [DBW17]
[DBW/17] arXiv: 1712.00827

Conclusion

- We derived upper bounds on entanglement generation and secret-key-agreement capacities over bidirectional channels. Sizes of reference systems are same as size of input systems (Open question in [BHLS03]).
- Obtain tighter upper bounds for channels obeying certain symmetries, see [DBW17].
- Introduced secure protocol for reading of memory devices under scrutiny of an eavesdropper. Both upper and lower bounds for this protocol can be found in [DBW17].

$$
\text { [DBW17] arXiv : } 1712.00827
$$

Conclusion

- We derived upper bounds on entanglement generation and secret-key-agreement capacities over bidirectional channels. Sizes of reference systems are same as size of input systems (Open question in [BHLS03]).
- Obtain tighter upper bounds for channels obeying certain symmetries, see [DBW17].
- Introduced secure protocol for reading of memory devices under scrutiny of an eavesdropper. Both upper and lower bounds for this protocol can be found in [DBW17].

$$
\text { [DBW17] arXiv : } 1712.00827
$$

SWAP and Collective dephasing

SWAP and Collective dephasing

Collective Dephasing

- Collective dephasing: $|00\rangle \rightarrow|00\rangle$, $|01\rangle \rightarrow e^{i \phi}|01\rangle,|10\rangle \rightarrow e^{i \phi}|10\rangle$, $|11\rangle \rightarrow e^{2 i \phi}|11\rangle$.
- Swap operator $S=\sum_{i j}|i j\rangle\langle j i|$ and collective dephasing:

$$
\begin{aligned}
& \mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}(\rho) \\
= & p S \rho S^{\dagger}+(1-p) U^{\phi} S \rho S^{\dagger} U^{\phi \dagger}
\end{aligned}
$$

[^0]: Entanglement may increase, decrease or not change due to bipartite quantum interactions. Entanglement distillation: Maximally entangled states are useful resource for several information processing tasks: quantum key distribution, quantum teleportation, etc. Secret key distillation: Need for secure communication protocols between two parties over network - private reading.

[^1]: where $\sigma_{S_{A} A B S_{B}}=\mathcal{N}_{A^{\prime} B^{\prime} \rightarrow A B}\left(\rho S_{A} A^{\prime} B^{\prime} S_{B}\right)$.

